
comment installer-grafana-et-prometheus-sur-rocky-linux-9
Grafana	is	an	open-source	and	multi-platform	data	visualization	platform	developed	by	Grafana	Labs.	Grafana	provides	
an	interactive	data	visualization	web	application	which	includes	charts,	graphs,	and	alerts.	With	Grafana,	you	can	
query,	visualize,	set	up	alerts,	and	explore	metrics,	logs,	and	traces	of	TSDB.	It	is	a	powerful	tool	that	turns	time-series	
database	(TSDB)	data	into	an	insightful	graph	and	visualization.

In	Grafana,	you	can	add	your	time-series	database	data	via	the	'Data	Source'.	Grafana	supports	multiple	data	sources	
such	as	Prometheus,	InfluxDB,	PostgreSQL,	Loki,	Jaeger,	Graphite,	Google	Cloud	Monitoring,	AWS	CloudWatch,	Azure	
Monitor,	and	many	more.

In	this	tutorial,	I	will	install	Grafana	open-source	analytics	and	visualization	web	application	with	Nginx	as	a	reverse	
proxy.	Then,	I	will	install	and	configure	the	Prometheus	open-source	system	monitoring	with	Node	Exporter	to	gather	
system	metrics.	Lastly,	you	will	add	Prometheus	as	the	data	source	to	the	Grafana	and	set	up	a	dashboard	for	system	
monitoring.

For	this	guide,	you	will	install	all	of	those	packages	on	top	of	the	Rocky	Linux	9	server.

Prerequisites
To	begin	with,	you	must	have	the	following	requirements	to	complete	this	guide:

A	Rocky	Linux	9	server	-	You	can	use	multiple	servers	or	a	single	server	for	the	experiment.	Below	are	the	types	of
installation	you	must	know:
Single	server:	grafana,	prometheus,	and	node_exporter	on	a	single	server.
Two	servers:	grafana	on	server1,	prometheus,	and	node_exporter	on	server3.
Three	servers:	grafana	on	server1,	prometheus	on	server2,	and	node_exporter	on	server3.
A	non-root	user	with	sudo/root	administrator	privileges.

Installing	Grafana
Grafana	is	a	multi-platform	application	that	can	be	installed	on	multiple	operating	systems	such	as	Windows,	Linux,	and
macOS.	For	Linux	systems,	Grafana	provides	repositories	for	both	Debian-based	operating	systems	(Debian	and
Ubuntu)	and	RHEL-based	operating	systems	(RHEL,	CentOS,	Fedora,	RockyLinux,	AlmaLinux).

In	this	step,	you	will	set	up	the	Grafana	repository	and	install	the	Grafana	9.3	on	the	Rocky	Linux	9	server.

Before	setting	up	the	Grafana	repository,	run	the	below	command	to	set	up	the	default	crypto	policy	backend	to	'SHA1'
and	reboot	the	server	to	apply	changes.

sudo	update-crypto-policies	--set	DEFAULT:SHA1
sudo	reboot

After	logging	in	again,	create	a	new	repository	file	'/etc/yum.repos.d/grafana.repo'	using	the	below	nano	editor
command.

sudo	nano	/etc/yum.repos.d/grafana.repo

Add	the	following	Grafana	repository	to	the	file.

[grafana]
name=grafana
baseurl=https://rpm.grafana.com
repo_gpgcheck=1
enabled=1
gpgcheck=1
gpgkey=https://rpm.grafana.com/gpg.key
sslverify=1
sslcacert=/etc/pki/tls/certs/ca-bundle.crt

Save	the	file	and	exit	the	editor.

Now	run	the	below	command	to	verify	the	list	repository	on	your	system.	You	should	see	that	the	Grafana	repository
has	been	added.

sudo	dnf	repolist

With	the	Grafana	repository	added,	you	can	now	install	the	Grafana	package	via	the	dnf	command	below.

sudo	dnf	install	grafana

When	prompted,	input	y	to	confirm	the	installation	and	press	ENTER.

You	will	also	be	prompted	to	confirm	the	gpg	key	for	the	Grafana	repository.	Input	y	and	press	ENTER	to	add	the	gpg
key	to	your	system.

When	the	Grafana	is	installed,	run	the	below	systemctl	command	to	reload	systemd	privileges.

sudo	systemctl	daemon-reload

Then,	start	and	enable	the	Grafana	service	'grafana-server'.	The	Grafana	service	should	now	be	enabled	and	running.

sudo	systemctl	start	grafana-server
sudo	systemctl	enable	grafana-server

Verify	the	'grafana-server'	service	via	the	below	command	to	ensure	that	the	service	is	running.

sudo	systemctl	status	grafana-server

The	below	output	confirms	that	the	grafana-server	is	enabled	and	running.	The	grafana-server	should	now	be	run
automatically	upon	the	bootup.

Configuring	Grafana
Now	that	the	Grafana	server	is	installed	and	running,	you'll	set	up	how	the	Grafana	should	be	run	via	the	configuration
filer	'/etc/grafana/grafana.ini'.	In	this	example,	you'll	run	grafana	on	localhost	only	with	the	local-domain
grafana.hwdomain.io.

Open	the	Grafana	configuration	file	'/etc/grafana/grafana.ini'	using	the	below	nano	editor	command.

sudo	nano	/etc/grafana/grafana.ini

Uncomment	some	below	lines	and	change	the	default	value	as	below.

[server]

#	The	IP	address	to	bind	to,	empty	will	bind	to	all	interfaces
http_addr	=	localhost

#	The	http	port		to	use
http_port	=	3000

#	The	public	facing	domain	name	used	to	access	grafana	from	a	browser
domain	=	grafana.hwdomain.io

With	this	configuration,	you	configure	Grafana	to	run	at	localhost	only	with	the	default	TCP	port	3000.	You'll	run
Grafana	with	the	local	domain	grafana.hwdomain.io,	which	is	handled	by	the	reverse	proxy.

Save	the	file	and	close	the	editor	when	you	are	finished.

Now	restart	the	'grafana-server'	service	via	the	systemctl	command	to	apply	new	changes.

sudo	systemctl	restart	grafana-server

Grafana	is	configured,	and	up	and	running.	You'll	next	install	and	configure	Nginx	as	a	reverse	proxy	for	the	Grafana
server.

Setting	up	Nginx	as	a	Reverse	Proxy
In	this	step,	you	will	install	the	Nginx	web	server	and	configure	it	as	a	reverse	proxy	for	the	Grafana	server.	Before
installing	Nginx,	ensure	you	have	a	domain	name	or	local	domain	resolving	to	your	server	and	SSL	certificates
generated.

Run	the	dnf	command	below	to	install	the	Nginx	web	server	to	your	system.

sudo	dnf	install	nginx

Input	y	when	prompted	for	the	confirmation	and	press	ENTER	to	proceed.

After	installing	Nginx,	create	a	new	Nginx	server	block	file	'/etc/nginx/conf.d/grafana.conf'	using	the	below	nano	editor
command.

sudo	nano	/etc/nginx/conf.d/grafana.conf

Add	the	following	lines	to	the	file	and	change	the	details	domain	name	and	path	of	SSL	certificates.

#	this	is	required	to	proxy	Grafana	Live	WebSocket	connections.
map	$http_upgrade	$connection_upgrade	{
		default	upgrade;
		''	close;
}

server	{
				listen						80;
				server_name	grafana.hwdomain.io;
				rewrite					^			https://$server_name$request_uri?	permanent;
}

server	{
		listen						443	ssl	http2;
		server_name	grafana.hwdomain.io;

		root	/usr/share/nginx/html;
		index	index.html	index.htm;

		ssl_certificate	/etc/letsencrypt/live/grafana.hwdomain.io/fullchain.pem;
		ssl_certificate_key	/etc/letsencrypt/live/grafana.hwdomain.io/privkey.pem;

		access_log	/var/log/nginx/grafana-access.log;
		error_log	/var/log/nginx/grafana-error.log;

		location	/	{
				proxy_set_header	Host	$http_host;
				proxy_pass	http://localhost:3000/;
		}

		#	Proxy	Grafana	Live	WebSocket	connections.
		location	/api/live	{
				rewrite		^/(.*)		/$1	break;
				proxy_http_version	1.1;
				proxy_set_header	Upgrade	$http_upgrade;
				proxy_set_header	Connection	$connection_upgrade;
				proxy_set_header	Host	$http_host;
				proxy_pass	http://localhost:3000/;
		}
}

With	this	configuration,	you'll	run	Nginx	as	a	reverse	proxy	for	the	grafana	server	that	is	running	on	localhost:3000.
You'll	also	secure	the	grafana	via	a	secure	SSL/HTTPS	connection.	Also,	you'll	set	up	a	reverse	proxy	for	the	grafana
WebSocket	connections.

Save	the	file	and	exit	the	editor	when	you	are	finished.

Next,	run	the	below	command	to	verify	the	Nginx	configuration	and	ensure	that	you	have	the	proper	configuration.

sudo	nginx	-t

If	you	have	the	proper	configuration,	you	should	get	the	output	message	such	as	'test	successful	-	syntax	ok'.

Now	run	the	below	systemctl	command	to	start	and	enable	the	Nginx.

sudo	systemctl	start	nginx
sudo	systemctl	enable	nginx

The	Nginx	service	should	now	be	running	and	enabled.	Verify	the	Nginx	service	via	the	systemctl	command	below.

sudo	systemctl	status	nginx

The	following	output	confirms	that	the	Nginx	service	is	running	and	it's	enabled.	The	Nginx	service	should	be	run
automatically	upon	the	bootup.

With	the	Nginx	service	up	and	running	on	both	HTTP	and	HTTPS	protocols,	you'll	then	set	up	the	firewalld	to	open	both
services.

Run	the	below	firewall-cmd	command	to	add	the	HTTP	and	HTTPS	service	to	the	firewalld.

sudo	firewall-cmd	--add-service={http,https}	--permanent

After	that,	reload	the	firewalld	to	apply	changes	and	verify	the	list	of	enabled	services	on	firerwalld.

sudo	firewall-cmd	--reload
sudo	firewall-cmd	--list-services

You	should	receive	the	following	output	-	The	HTTP	and	HTTPS	services	added	t	the	firewalld.

After	configured	the	firewalld,	you	will	be	able	to	access	your	grafana	and	Nginx	reverse	proxy	installation.

Open	the	web	browser	and	visit	the	domain	name	for	your	grafana	installation	(i.e:	https://grafana.hwdomain.io/),	and
you	should	get	the	grafana	login	page.

Log	in	with	the	default	user/password	'admin'.

After	logging	in,	you	will	be	asked	to	change	the	default	password.	Input	the	new	password	for	your	grafana	installation
and	press	'Submit'	to	confirm.

You	should	now	get	the	grafana	dashboard	as	the	following	screenshot.

At	this	point,	you	have	finished	the	grafana	installation	and	configuration	on	the	Rocky	Linux	9	server.	You	also	run	the
grafana	with	Nginx	reverse	proxy	and	secured	the	grafana	installation	via	HTTPS	and	change	the	default	admin	user	for
grafana.

With	this,	you'll	next	install	and	configure	Prometheus	and	node_exporter	for	gathering	metrics	of	your	system	and	add
Prometheus	as	the	data	source	to	your	grafana.

Installing	Prometheus	and	Node	Exporter
Prometheus	is	an	open-source	system	monitoring	and	alerting	toolkit.	It's	a	powerful	tool	for	collecting	and	querying
metric	data.	The	Prometheus	works	by	pulling(scraping)	real-time	metrics	from	application	services	and	hosts	on	a
regular	cadence	by	sending	HTTP	requests	on	metrics	endpoints,	then	compresses	and	stores	them	in	a	time-series
database.

The	node_exporter	is	one	of	the	most	popular	prometheus	scrapers	for	pulling	metrics	of	operating	systems.	The
node_exporter	is	designed	to	monitor	the	host	system,	it	exposes	a	wide	variety	of	hardware-	and	kernel-related
metrics.

You'll	now	install	prometheus	and	node_exporter	on	the	Rocky	Linux	9	server.

Create	a	new	repository	file	'/etc/yum.repos.d/prometheus.repo'	using	the	below	nano	editor	command.

sudo	nano	/etc/yum.repos.d/prometheus.repo

Add	the	following	lines	to	the	file,	which	is	the	prometheus	repository	provided	by	Packagecloud.io.

[prometheus]
name=prometheus
baseurl=https://packagecloud.io/prometheus-rpm/release/el/$releasever/$basearch
repo_gpgcheck=1
enabled=1
gpgkey=https://packagecloud.io/prometheus-rpm/release/gpgkey
							https://raw.githubusercontent.com/lest/prometheus-rpm/master/RPM-GPG-KEY-prometheus-rpm
gpgcheck=1
metadata_expire=300

Save	and	close	the	file	when	you	are	finished.

You	can	now	verify	the	list	of	available	repositories	on	your	system	via	the	dnf	command	below.

sudo	dnf	repolist

In	the	below	output	confirm	that	the	prometheus	repository	added	to	your	system.

Now	install	prometheus	and	node_exporter	packages	via	the	following	dnf	command.

sudo	dnf	install	prometheus2	node_exporter

When	prompted,	input	y	to	confirm	and	press	ENTER.	And	the	prometheus	and	node_exporter	installation	will	begin.

Also,	when	prompted	to	add	the	GPG	key,	input	y	to	confirm.

After	prometheus	and	node_exporter	is	installed,	run	the	following	systemctl	command	to	start	and	enable	bot	services,
the	prometheus,	and	node_exporter	services.

sudo	systemctl	start	prometheus	node_exporter
sudo	systemctl	enable	prometheus	node_exporter

Now	verify	the	promethues	and	node_exporter	services	using	the	below	command.

sudo	systemctl	status	prometheus	node_exporter

In	the	below	output	confirm	that	the	prometheus	and	node_exporter	service	is	running	and	enabled.	Both	services	will
be	run	automatically	at	boot.

The	prometheus	is	running	on	port	9090	by	default,	while	node-exporter	is	running	on	default	port	9100.	You'll	now	add
both	ports	9090	and	9100	to	the	firewalld.

Run	the	below	firewall-cmd	command	to	add	the	prometheus	and	node_exporter	port	to	the	firewalld.	Then,	reload	the
firewalld	to	apply	new	changes.

sudo	firewall-cmd	--add-port={9090/tcp,9100/tcp}	--permanent
sudo	firewall-cmd	--reload

With	the	firewalld	configured,	you	can	access	the	prometheus	and	node_exporter	installation.	But,	you'll	next	go	a	step
further	by	configuring	both	prometheus	and	node_exporter.

Configuring	Prometheus	and	Node	Exporter
After	prometheus	and	node_exporter	is	installed,	you	will	now	set	up	both	services	with	the	following	configurations:

Enabling	the	basic	authentication	for	prometheus.
Enabling	HTTPS/SSL	on	prometheus	web	interface.
Setting	u	scrape_config	for	the	target	machine.

Enable	basic_auth	and	HTTPS/SSL	for	Prometheus

On	the	default	installation,	prometheus	comes	without	password	authentication	and	runs	on	the	HTTP	protocol.	To
secure	the	installation,	you'll	then	set	up	the	basic_auth	and	enable	HTTPS	on	your	prometheus	installation.

Before	setting	up	the	basic_auth	on	prometheus,	run	the	following	dnf	command	to	install	the	'httpd-tools'	package.
This	package	provides	the	command	'htpasswd'	that	can	be	used	to	generate	a	bcrypt	password.

sudo	dnf	install	httpd-tools	-y

Next,	run	the	below	command	to	generate	a	password	for	your	prometheus	installation.	In	this	example,	you	will	use
the	user	'promadmin'	as	the	default	user	for	the	prometheus	basic_auth.

htpasswd	-nB	promadmin

When	prompted,	input	the	password	that	will	be	used	for	prometheus	basic_auth	and	repeat	the	password.

In	the	below	output,	you	can	see	the	generated	bcrypt	password.	Copy	the	username	and	generated	password.

Now	create	a	new	prometheus	configuration	file	'/etc/prometheus/web.yml'	using	the	below	nano	editor	command.	This
configuration	will	enable	HTTPS/SSL	and	the	basic_auth	on	your	Prometheus	installation.

sudo	nano	/etc/prometheus/web.yml

Add	the	following	lines	to	the	file	and	be	sure	to	change	the	path	of	SSL	certificates	and	the	username	and	password
that	will	be	sued	for	your	prometheus.

#	tls	certificates
tls_server_config:
		cert_file:	fullchain.pem
		key_file:	privkey.pem

#	basic_auth
basic_auth_users:
		promadmin:	$2y$05$.OhemZb5HtMYsHSBdrH4/.74FKCL2NbD2I41FI5L/VO.Uy6c2dQ7i

The	'tls_server_config'	section	allows	you	to	enable	secure	HTTPS/SSL	connections,	and	'basic_auth_users'	will	enable
the	basic	password	authentication	on	your	prometheus	installation.

Save	the	file	and	exit	the	editor	when	you	are	finished.

Next,	open	the	file	'/etc/default/prometheus'	using	the	following	nano	editor	command.

sudo	nano	/etc/default/prometheus

Add	the	following	line	to	the	'PROMETHEUS_OPTS'	section.

--web.config.file=/etc/prometheus/web.yml

The	option	'--web.config.file'	will	specify	the	configuration	or	prometheus	web	interface.	In	this	example,	the
configuration	is	'/etc/prometheus/web.yml'.

Save	the	file	and	exit	the	editor	when	you	are	done.

Setting	up	scrape_config	for	Target	Machine

After	enabled	the	prometheus	basic_auth	and	HTTPS/SSL,	you'll	next	add	the	target	machine	to	the	promethues
'scrape_config'	section.

Open	the	promethues	configuration	file	'/etc/prometheus/prometheus.yml'	using	the	below	nano	editor	command.

sudo	nano	/etc/prometheus/prometheus.yml

On	the	scrape_config	section,	change	the	default	configuration	with	the	following	lines.

scrape_configs:
		#	The	job	name	is	added	as	a	label	`job=<job_name>`	to	any	timeseries	scraped	from	this	config.
		-	job_name:	"prometheus"

				#	metrics_path	defaults	to	'/metrics'
				#	scheme	defaults	to	'http'.
				#	add	settings	for	certificate	and	authentication
				scheme:	https
				tls_config:
						cert_file:	/etc/prometheus/server.crt
						key_file:	/etc/prometheus/server.key
						#	if	using	self-signed	certificate,	set	[true]
						insecure_skip_verify:	true
				basic_auth:
						username:	'promadmin'
						password:	'password'

				static_configs:
						#	if	using	a	valid	certificate,	set	the	same	hostname	in	the	certificate
						-	targets:	["localhost:9090"]

		-	job_name:	"node_exporter"

				static_configs:
						-	targets:	["192.168.5.120:9100"]

With	this	configuration,	you'll	set	up	two	jobs	with	the	name	'prometheus'	and	'node_exporter'.	And	be	sure	to	change
the	basic_auth		section	on	the	'promethues'	job.

On	the	'prometheus'	job,	you	will	enable	the	HTTPS	secure	connection	and	enable	the	'basic_auth'	for
authentication.	In	the	'prometheus'	job,	the	target	host	is	'localhost:9090',	which	is	the	prometheus	server.
On	the	'node_exporter'	job,	the	target	is	the	node_exporter	service	itself,	which	is	running	on	port	'9100'.

Now	run	the	below	systemctl	command	to	restart	both	prometheus	and	node_exporter	services	and	apply	new	changes.

sudo	systemctl	restart	prometheus	node_exporter

At	this	point,	you	have	taken	prometheus	to	the	next	step	by	enabling	basic	authentication	and	securing	via	SSL/HTTPS.
You	also	added	two	scrapes	for	collecting	metrics,	the	'prometheus',	and	'node_exporter'.

To	verify	your	installation,	open	up	the	web	browser	and	visit	the	server	IP	address	with	port	'9090'	(i.e:
https://192.168.5.120:9090/).

You'll	now	be	prompted	with	the	basic	authentication,	input	the	user	'promadmin'	and	the	password	that	you've
created.

After	logging	in,	you	should	have	the	promethues	dashboard.	Input	the	query	such	as	'node_memory_Active_bytes'	and
click	'Execute'.	You	should	get	the	metrics	from	the	query	that	you	have	executed.

The	query	'node_memory_Active_bytes'	is	provided	by	the	'node_exporter'	for	checking	the	active	memory.

Next,	click	on	the	'Status'	menu	and	select	'Target'.	You	should	have	two	different	jobs	that	you	have	created,	the
'prometheus'	and	'node_exporter'.	Both	the	'prometheus'	and	'node_exporter'	jobs	status	is	up.

With	the	prometheus	and	node_exporter	is	configured,	you'll	next	add	the	prometheus	as	a	data	source	to	grafana.

Adding	Prometheus	as	Data	Source	to	Grafana
Grafana	supports	multiple	data	sources	such	as	MySQL,	PostgreSQL,	Influxdb,	Graphite,	Prometheus,	and	many	more.
In	this	step,	you'll	add	the	promethues	as	the	data	source	to	the	grafana.

On	the	grafana	dashboard,	click	the	'Configuration'	menu	and	select	'Data	Sources'.

Now	click	'Add	data	source'	to	add	the	new	data	source.

Select	the	data	source	type	you	want	to	add.	This	example	is	'Prometheus'.

Now	input	details	of	prometheus	configuration	-	the	'prometheus'	scrape_config.	Be	sure	to	enable	the	'Basic	auth'	and
the	'Skip	TLS	Verify'	(if	you're	using	the	self-signed	certificates).

Scroll	down	to	the	bottom	page	and	click	the	'Save	&	test'	to	confirm.	if	you	have	the	output	message	such	as	'Data
source	is	working',	then	you	are	ready	to	go	and	added	the	prometheus	data	source	to	grafana.

Setting	up	Dashboard	Monitoring
With	Prometheus	added	to	Grafana	as	a	data	source,	you	can	create	a	new	dashboard	for	monitoring	your	system.	You
can	create	the	dashboard	manually	for	each	cell	or	by	importing	some	examples	of	the	Grafana	dashboard	from	the
Grafana	dashboard	repository.

In	this	step,	you'll	set	up	the	Grafana	dashboard	by	importing	the	available	dashboard	online	to	Grafana.

Click	on	the	'Dashboard'	menu	and	select	'Import'.

Now	you	can	find	examples	of	a	dashboard	from	the	Grafana	Dashboard	repository.	This	example	uses	the	Grafana
dashboard	with	id	'15172'.

Input	the	dashboard	id	you	want	to	import,	'15172',	then	click	'Load'.

Now,	input	the	name	of	the	new	dashboard	and	select	'Prometheus'	as	the	data	source.	Click	'Import'	to	confirm.

In	the	below	screenshot	confirm	that	the	new	grafana	dashboard	with	the	prometheus	data	source	for	monitoring
systems	is	created.

Conclusion
In	this	tutorial,	you	installed	Grafana	for	data	visualization	with	Nginx	as	a	reverse	proxy	on	a	Rocky	Linux	9	server.
You	also	installed	the	Prometheus	and	node_exporter	along	with	Grafana.

The	Prometheus	runs	with	SSL/TLS	connection	enabled,	basic_auth	module	enabled	for	user	authentication,	and
configured	two	scrapes	for	collecting	system	metrics	with	the	Prometheus	itself	and	the	node_expoter.

Lastly,	you	added	Prometheus	as	a	data	source	to	Grafana	and	imported	a	dashboard	for	data	visualization	with	data
collected	by	Prometheus	and	node_exporter.

From	here,	you	can	add	another	exporter	for	your	application	to	Prometheus	and	visualize	all	the	metrics	via	the
Grafana	data	visualization	dashboard.

